Backward Stochastic Differential Equations (BSDEs) Using Infinite-Dimensional Martingales with Subdifferential Operator
نویسندگان
چکیده
In this paper, we focus on a family of backward stochastic differential equations (BSDEs) with subdifferential operators that are driven by infinite-dimensional martingales. We shall show the solution to such BSDEs exists and is unique. The existence uniqueness established using Yosida approximations. Furthermore, as an application main result, partial equation martingales continuous linear operator has unique under special condition Ft-progressively measurable generator F model proposed in paper equals zero.
منابع مشابه
Backward stochastic partial differential equations driven by infinite dimensional martingales and applications
This paper studies first a result of existence and uniqueness of the solution to a backward stochastic differential equation driven by an infinite dimensional martingale. Then, we apply this result to find a unique solution to a backward stochastic partial differential equation in infinite dimensions. The filtration considered is an arbitrary rightcontinuous filtration, not necessarily the natu...
متن کاملInfinite time interval backward stochastic differential equations with continuous coefficients
In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem f...
متن کاملStochastic PDEs and Infinite Horizon Backward Doubly Stochastic Differential Equations
We give a sufficient condition on the coefficients of a class of infinite horizon BDSDEs, under which the infinite horizon BDSDEs have a unique solution for any given square integrable terminal values. We also show continuous dependence theorem and convergence theorem for this kind of equations. A probabilistic interpretation for solutions to a class of stochastic partial differential equations...
متن کاملInfinite dimensional forward-backward stochastic differential equations and the KPZ equation∗
Kardar-Parisi-Zhang (KPZ) equation is a quasilinear stochastic partial differential equation(SPDE) driven by a space-time white noise. In recent years there have been several works directed towards giving a rigorous meaning to a solution of this equation. Bertini, Cancrini and Giacomin [2, 3] have proposed a notion of a solution through a limiting procedure and a certain renormalization of the ...
متن کاملBackward stochastic differential equations with Young drift
We show the well-posedness of backward stochastic differential equations containing an additional drift driven by a path of finite q-variation with q ∈ [1, 2). In contrast to previous work, we apply a direct fixpoint argument and do not rely on any type of flow decomposition. The resulting object is an effective tool to study semilinear rough partial differential equations via a Feynman–Kac typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2022
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms11100536